Edit model card

swinv2-tiny-patch4-window8-256-finetuned-THFOOD-50

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the THFOOD-50 dataset. It achieves the following results on the:
Train set

  • Loss: 0.1669
  • Accuracy: 0.9557

Validation set

  • Loss: 0.2535
  • Accuracy: 0.9344

Test set

  • Loss: 0.2669
  • Accuracy: 0.9292

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.6558 0.99 47 3.1956 0.28
1.705 1.99 94 1.1701 0.6787
0.9805 2.98 141 0.6492 0.8125
0.7925 4.0 189 0.4724 0.8644
0.6169 4.99 236 0.4129 0.8738
0.5343 5.99 283 0.3717 0.8825
0.5196 6.98 330 0.3654 0.8906
0.5059 8.0 378 0.3267 0.8969
0.4432 8.99 425 0.2996 0.9081
0.3819 9.99 472 0.3056 0.9087
0.3627 10.98 519 0.2796 0.9213
0.3505 12.0 567 0.2753 0.915
0.3224 12.99 614 0.2830 0.9206
0.3206 13.99 661 0.2797 0.9231
0.3141 14.98 708 0.2569 0.9287
0.2946 16.0 756 0.2582 0.9319
0.3008 16.99 803 0.2583 0.9337
0.2356 17.99 850 0.2567 0.9281
0.2954 18.98 897 0.2581 0.9319
0.2628 19.89 940 0.2535 0.9344

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
2
Hosted inference API
Drag image file here or click to browse from your device
This model can be loaded on the Inference API on-demand.

Dataset used to train thean/swinv2-tiny-patch4-window8-256-finetuned-THFOOD-50