glpn-nyu-finetuned-diode-221223-094145
This model is a fine-tuned version of vinvino02/glpn-nyu on the diode-subset dataset. It achieves the following results on the evaluation set:
- Loss: 0.4077
- Mae: 0.4032
- Rmse: 0.6201
- Abs Rel: 0.3554
- Log Mae: 0.1594
- Log Rmse: 0.2173
- Delta1: 0.4530
- Delta2: 0.6868
- Delta3: 0.8071
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 48
- seed: 2022
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Mae | Rmse | Abs Rel | Log Mae | Log Rmse | Delta1 | Delta2 | Delta3 |
---|---|---|---|---|---|---|---|---|---|---|---|
1.0433 | 1.0 | 72 | 0.5885 | 0.5648 | 0.7732 | 0.4665 | 0.2691 | 0.3222 | 0.2134 | 0.4070 | 0.5668 |
0.4529 | 2.0 | 144 | 0.4284 | 0.4217 | 0.6232 | 0.3846 | 0.1702 | 0.2214 | 0.3935 | 0.6428 | 0.7958 |
0.415 | 3.0 | 216 | 0.4221 | 0.4049 | 0.6164 | 0.3800 | 0.1603 | 0.2180 | 0.4499 | 0.6735 | 0.8070 |
0.3643 | 4.0 | 288 | 0.4430 | 0.4172 | 0.6176 | 0.4419 | 0.1671 | 0.2265 | 0.4208 | 0.6489 | 0.8077 |
0.3927 | 5.0 | 360 | 0.4186 | 0.4072 | 0.6199 | 0.3646 | 0.1623 | 0.2199 | 0.4362 | 0.6675 | 0.8077 |
0.389 | 6.0 | 432 | 0.4093 | 0.4018 | 0.6168 | 0.3515 | 0.1592 | 0.2155 | 0.4499 | 0.6753 | 0.8111 |
0.3521 | 7.0 | 504 | 0.4320 | 0.4112 | 0.6165 | 0.4061 | 0.1646 | 0.2226 | 0.4358 | 0.6569 | 0.8062 |
0.3324 | 8.0 | 576 | 0.4056 | 0.3977 | 0.6132 | 0.3570 | 0.1566 | 0.2148 | 0.4556 | 0.7006 | 0.8157 |
0.3183 | 9.0 | 648 | 0.4187 | 0.4036 | 0.6151 | 0.3667 | 0.1607 | 0.2172 | 0.4472 | 0.6664 | 0.8095 |
0.3052 | 10.0 | 720 | 0.4149 | 0.4031 | 0.6171 | 0.3683 | 0.1601 | 0.2191 | 0.4469 | 0.6815 | 0.8073 |
0.3071 | 11.0 | 792 | 0.4168 | 0.4111 | 0.6252 | 0.3587 | 0.1647 | 0.2218 | 0.4322 | 0.6643 | 0.8019 |
0.3358 | 12.0 | 864 | 0.4161 | 0.4029 | 0.6171 | 0.3650 | 0.1600 | 0.2189 | 0.4507 | 0.6789 | 0.8092 |
0.3385 | 13.0 | 936 | 0.4116 | 0.4051 | 0.6215 | 0.3565 | 0.1609 | 0.2190 | 0.4478 | 0.6770 | 0.8053 |
0.316 | 14.0 | 1008 | 0.4092 | 0.3982 | 0.6138 | 0.3618 | 0.1569 | 0.2157 | 0.4577 | 0.6951 | 0.8109 |
0.3301 | 15.0 | 1080 | 0.4159 | 0.4056 | 0.6199 | 0.3654 | 0.1619 | 0.2204 | 0.4462 | 0.6743 | 0.8056 |
0.3076 | 16.0 | 1152 | 0.4130 | 0.4051 | 0.6200 | 0.3612 | 0.1612 | 0.2195 | 0.4470 | 0.6787 | 0.8076 |
0.3001 | 17.0 | 1224 | 0.4134 | 0.4071 | 0.6244 | 0.3579 | 0.1621 | 0.2210 | 0.4487 | 0.6771 | 0.8045 |
0.3293 | 18.0 | 1296 | 0.4091 | 0.4031 | 0.6182 | 0.3552 | 0.1601 | 0.2174 | 0.4501 | 0.6786 | 0.8065 |
0.3023 | 19.0 | 1368 | 0.4089 | 0.3990 | 0.6143 | 0.3633 | 0.1573 | 0.2160 | 0.4518 | 0.6966 | 0.8137 |
0.3288 | 20.0 | 1440 | 0.4067 | 0.4006 | 0.6166 | 0.3538 | 0.1580 | 0.2155 | 0.4529 | 0.6895 | 0.8122 |
0.2988 | 21.0 | 1512 | 0.4061 | 0.4060 | 0.6221 | 0.3491 | 0.1614 | 0.2183 | 0.4480 | 0.6777 | 0.8059 |
0.3037 | 22.0 | 1584 | 0.4081 | 0.4025 | 0.6204 | 0.3582 | 0.1587 | 0.2174 | 0.4523 | 0.6905 | 0.8093 |
0.3284 | 23.0 | 1656 | 0.4080 | 0.4062 | 0.6209 | 0.3545 | 0.1615 | 0.2184 | 0.4409 | 0.6794 | 0.8060 |
0.3261 | 24.0 | 1728 | 0.4092 | 0.4044 | 0.6208 | 0.3562 | 0.1602 | 0.2183 | 0.4512 | 0.6807 | 0.8061 |
0.3039 | 25.0 | 1800 | 0.4079 | 0.4005 | 0.6159 | 0.3576 | 0.1585 | 0.2167 | 0.4611 | 0.6827 | 0.8095 |
0.2843 | 26.0 | 1872 | 0.4072 | 0.4045 | 0.6212 | 0.3548 | 0.1603 | 0.2182 | 0.4502 | 0.6856 | 0.8079 |
0.2828 | 27.0 | 1944 | 0.4110 | 0.4089 | 0.6248 | 0.3578 | 0.1631 | 0.2211 | 0.4419 | 0.6756 | 0.8031 |
0.3212 | 28.0 | 2016 | 0.4063 | 0.3981 | 0.6148 | 0.3547 | 0.1569 | 0.2157 | 0.4651 | 0.6891 | 0.8102 |
0.2936 | 29.0 | 2088 | 0.4087 | 0.4099 | 0.6243 | 0.3547 | 0.1638 | 0.2202 | 0.4366 | 0.6711 | 0.8038 |
0.2999 | 30.0 | 2160 | 0.4067 | 0.3996 | 0.6161 | 0.3547 | 0.1581 | 0.2166 | 0.4624 | 0.6880 | 0.8082 |
0.3052 | 31.0 | 2232 | 0.4044 | 0.3983 | 0.6149 | 0.3517 | 0.1571 | 0.2149 | 0.4591 | 0.6923 | 0.8124 |
0.3082 | 32.0 | 2304 | 0.4069 | 0.4044 | 0.6224 | 0.3530 | 0.1597 | 0.2179 | 0.4533 | 0.6872 | 0.8058 |
0.3077 | 33.0 | 2376 | 0.4072 | 0.4061 | 0.6218 | 0.3545 | 0.1612 | 0.2189 | 0.4462 | 0.6821 | 0.8057 |
0.3043 | 34.0 | 2448 | 0.4063 | 0.4002 | 0.6170 | 0.3551 | 0.1579 | 0.2166 | 0.4575 | 0.6932 | 0.8101 |
0.2933 | 35.0 | 2520 | 0.4097 | 0.4054 | 0.6228 | 0.3562 | 0.1606 | 0.2188 | 0.4485 | 0.6857 | 0.8051 |
0.2996 | 36.0 | 2592 | 0.4059 | 0.4025 | 0.6194 | 0.3544 | 0.1590 | 0.2171 | 0.4522 | 0.6902 | 0.8087 |
0.3123 | 37.0 | 2664 | 0.4058 | 0.4024 | 0.6207 | 0.3538 | 0.1588 | 0.2171 | 0.4573 | 0.6893 | 0.8079 |
0.318 | 38.0 | 2736 | 0.4069 | 0.4028 | 0.6187 | 0.3555 | 0.1594 | 0.2172 | 0.4528 | 0.6876 | 0.8075 |
0.2938 | 39.0 | 2808 | 0.4065 | 0.4031 | 0.6228 | 0.3557 | 0.1584 | 0.2167 | 0.4545 | 0.6902 | 0.8096 |
0.294 | 40.0 | 2880 | 0.4059 | 0.4003 | 0.6170 | 0.3570 | 0.1577 | 0.2162 | 0.4576 | 0.6940 | 0.8098 |
0.3139 | 41.0 | 2952 | 0.4072 | 0.4048 | 0.6202 | 0.3556 | 0.1605 | 0.2181 | 0.4484 | 0.6847 | 0.8075 |
0.2953 | 42.0 | 3024 | 0.4080 | 0.4042 | 0.6208 | 0.3560 | 0.1598 | 0.2176 | 0.4514 | 0.6855 | 0.8067 |
0.3093 | 43.0 | 3096 | 0.4076 | 0.4040 | 0.6216 | 0.3553 | 0.1596 | 0.2180 | 0.4532 | 0.6871 | 0.8076 |
0.2843 | 44.0 | 3168 | 0.4073 | 0.4058 | 0.6225 | 0.3547 | 0.1609 | 0.2183 | 0.4482 | 0.6816 | 0.8070 |
0.3064 | 45.0 | 3240 | 0.4069 | 0.4047 | 0.6215 | 0.3545 | 0.1601 | 0.2179 | 0.4512 | 0.6856 | 0.8076 |
0.3027 | 46.0 | 3312 | 0.4073 | 0.4042 | 0.6228 | 0.3557 | 0.1596 | 0.2179 | 0.4542 | 0.6880 | 0.8075 |
0.304 | 47.0 | 3384 | 0.4069 | 0.4063 | 0.6239 | 0.3546 | 0.1609 | 0.2186 | 0.4481 | 0.6829 | 0.8059 |
0.297 | 48.0 | 3456 | 0.4063 | 0.4032 | 0.6202 | 0.3550 | 0.1590 | 0.2171 | 0.4543 | 0.6879 | 0.8089 |
0.3036 | 49.0 | 3528 | 0.4057 | 0.4031 | 0.6217 | 0.3545 | 0.1588 | 0.2170 | 0.4551 | 0.6896 | 0.8093 |
0.2949 | 50.0 | 3600 | 0.4077 | 0.4032 | 0.6201 | 0.3554 | 0.1594 | 0.2173 | 0.4530 | 0.6868 | 0.8071 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
- Downloads last month
- 0