Edit model card

Baseline Model trained on train5a1e8w7 to apply classification on label

Metrics of the best model:

accuracy 0.693101

recall_macro 0.665973

precision_macro 0.657625

f1_macro 0.656998

Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64

See model plot below:

Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types=      continuous  dirty_float  low_card_int  ...   date  free_string  useless

v_21 False False False ... False False False v_32 True False False ... False False False v_15 False False False ... False False False v_4 True False False ... False False False v_1 False False False ... False False False v_8 False False False ... False False False v_12 False False Fa... v_34 False False False ... False False False v_35 True False False ... False False False v_36 True False False ... False False False v_37 True False False ... False False False v_38 True False False ... False False False v_39 True False False ... False False False v_40 False False False ... False False False[40 rows x 7 columns])),('logisticregression',LogisticRegression(C=0.1, class_weight='balanced',max_iter=1000))])

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Disclaimer: This model is trained with dabl library as a baseline, for better results, use AutoTrain.

Logs of training including the models tried in the process can be found in logs.txt

Downloads last month
0
Hosted inference API
This model can be loaded on the Inference API on-demand.