Baseline Model trained on diabetese5nnapz2 to apply classification on Outcome
Metrics of the best model:
accuracy 0.730498
average_precision 0.654082
roc_auc 0.795043
recall_macro 0.735834
f1_macro 0.718533
Name: DecisionTreeClassifier(class_weight='balanced', max_depth=5), dtype: float64
See model plot below:
Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types= continuous dirty_float ... free_string uselessIn a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.Pregnancies False False ... False False Glucose True False ... False False BloodPressure True False ... False False SkinThickness True False ... False False Insulin True False ... False False BMI True False ... False False DiabetesPedigreeFunction True False ... False False Age True False ... False False[8 rows x 7 columns])),('decisiontreeclassifier',DecisionTreeClassifier(class_weight='balanced', max_depth=5))])
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types= continuous dirty_float ... free_string useless Pregnancies False False ... False False Glucose True False ... False False BloodPressure True False ... False False SkinThickness True False ... False False Insulin True False ... False False BMI True False ... False False DiabetesPedigreeFunction True False ... False False Age True False ... False False[8 rows x 7 columns])),('decisiontreeclassifier',DecisionTreeClassifier(class_weight='balanced', max_depth=5))])
EasyPreprocessor(types= continuous dirty_float ... free_string useless Pregnancies False False ... False False Glucose True False ... False False BloodPressure True False ... False False SkinThickness True False ... False False Insulin True False ... False False BMI True False ... False False DiabetesPedigreeFunction True False ... False False Age True False ... False False[8 rows x 7 columns])
DecisionTreeClassifier(class_weight='balanced', max_depth=5)
Disclaimer: This model is trained with dabl library as a baseline, for better results, use AutoTrain.
Logs of training including the models tried in the process can be found in logs.txt
- Downloads last month
- 0