Tokenizer
Tokenizer
class tokenizers.Tokenizer
( model )
Parameters
-
model (Model) —
The core algorithm that this
Tokenizer
should be using.
A Tokenizer
works as a pipeline. It processes some raw text as input
and outputs an Encoding.
The Model in use by the Tokenizer
The optional Normalizer in use by the Tokenizer
Returns
(dict
, optional)
A dict with the current padding parameters if padding is enabled
Get the current padding parameters
Cannot be set, use enable_padding()
instead
The optional PreTokenizer in use by the Tokenizer
Returns
(dict
, optional)
A dict with the current truncation parameters if truncation is enabled
Get the currently set truncation parameters
Cannot set, use enable_truncation()
instead
add_special_tokens
(
tokens
)
β
int
Parameters
-
tokens (A
List
of AddedToken orstr
) — The list of special tokens we want to add to the vocabulary. Each token can either be a string or an instance of AddedToken for more customization.
Returns
int
The number of tokens that were created in the vocabulary
Add the given special tokens to the Tokenizer.
If these tokens are already part of the vocabulary, it just let the Tokenizer know about them. If they donβt exist, the Tokenizer creates them, giving them a new id.
These special tokens will never be processed by the model (ie wonβt be split into multiple tokens), and they can be removed from the output when decoding.
add_tokens
(
tokens
)
β
int
Parameters
-
tokens (A
List
of AddedToken orstr
) — The list of tokens we want to add to the vocabulary. Each token can be either a string or an instance of AddedToken for more customization.
Returns
int
The number of tokens that were created in the vocabulary
Add the given tokens to the vocabulary
The given tokens are added only if they donβt already exist in the vocabulary. Each token then gets a new attributed id.
Decode the given list of ids back to a string
This is used to decode anything coming back from a Language Model
Decode a batch of ids back to their corresponding string
enable_padding
( direction = 'right' pad_id = 0 pad_type_id = 0 pad_token = '[PAD]' length = None pad_to_multiple_of = None )
Parameters
-
direction (
str
, optional, defaults toright
) — The direction in which to pad. Can be eitherright
orleft
-
pad_to_multiple_of (
int
, optional) — If specified, the padding length should always snap to the next multiple of the given value. For example if we were going to pad witha length of 250 butpad_to_multiple_of=8
then we will pad to 256. -
pad_id (
int
, defaults to 0) — The id to be used when padding -
pad_type_id (
int
, defaults to 0) — The type id to be used when padding -
pad_token (
str
, defaults to[PAD]
) — The pad token to be used when padding -
length (
int
, optional) — If specified, the length at which to pad. If not specified we pad using the size of the longest sequence in a batch.
Enable the padding
enable_truncation
( max_length stride = 0 strategy = 'longest_first' direction = 'right' )
Parameters
-
max_length (
int
) — The max length at which to truncate -
stride (
int
, optional) — The length of the previous first sequence to be included in the overflowing sequence -
strategy (
str
, optional, defaults tolongest_first
) — The strategy used to truncation. Can be one oflongest_first
,only_first
oronly_second
. -
direction (
str
, defaults toright
) — Truncate direction
Enable truncation
encode
( sequence pair = None is_pretokenized = False add_special_tokens = True ) β Encoding
Parameters
-
sequence (
~tokenizers.InputSequence
) — The main input sequence we want to encode. This sequence can be either raw text or pre-tokenized, according to theis_pretokenized
argument:- If
is_pretokenized=False
:TextInputSequence
- If
is_pretokenized=True
:PreTokenizedInputSequence()
- If
-
pair (
~tokenizers.InputSequence
, optional) — An optional input sequence. The expected format is the same that forsequence
. -
is_pretokenized (
bool
, defaults toFalse
) — Whether the input is already pre-tokenized -
add_special_tokens (
bool
, defaults toTrue
) — Whether to add the special tokens
Returns
The encoded result
Encode the given sequence and pair. This method can process raw text sequences as well as already pre-tokenized sequences.
Example:
encode_batch
(
input
is_pretokenized = False
add_special_tokens = True
)
β
A List
of [`~tokenizers.Encodingβ]
Parameters
-
input (A
List
/`Tuple
of~tokenizers.EncodeInput
) — A list of single sequences or pair sequences to encode. Each sequence can be either raw text or pre-tokenized, according to theis_pretokenized
argument:- If
is_pretokenized=False
:TextEncodeInput()
- If
is_pretokenized=True
:PreTokenizedEncodeInput()
- If
-
is_pretokenized (
bool
, defaults toFalse
) — Whether the input is already pre-tokenized -
add_special_tokens (
bool
, defaults toTrue
) — Whether to add the special tokens
Returns
A List
of [`~tokenizers.Encodingβ]
The encoded batch
Encode the given batch of inputs. This method accept both raw text sequences as well as already pre-tokenized sequences.
Example:
from_pretrained
( identifier revision = 'main' auth_token = None ) β Tokenizer
Parameters
-
identifier (
str
) — The identifier of a Model on the Model Database Hub, that contains a tokenizer.json file -
revision (
str
, defaults to main) — A branch or commit id -
auth_token (
str
, optional, defaults to None) — An optional auth token used to access private repositories on the Model Database Hub
Returns
The new tokenizer
Instantiate a new Tokenizer from an existing file on the Model Database Hub.
Return the number of special tokens that would be added for single/pair sentences. :param is_pair: Boolean indicating if the input would be a single sentence or a pair :return:
post_process
( encoding pair = None add_special_tokens = True ) β Encoding
Apply all the post-processing steps to the given encodings.
The various steps are:
- Truncate according to the set truncation params (provided with
enable_truncation()
) - Apply the
PostProcessor
- Pad according to the set padding params (provided with
enable_padding()
)
Save the Tokenizer to the file at the given path.
Gets a serialized string representing this Tokenizer.
Convert the given token to its corresponding id if it exists
Train the Tokenizer using the given files.
Reads the files line by line, while keeping all the whitespace, even new lines.
If you want to train from data store in-memory, you can check
train_from_iterator()
train_from_iterator
( iterator trainer = None length = None )
Parameters
-
iterator (
Iterator
) — Any iterator over strings or list of strings -
trainer (
~tokenizers.trainers.Trainer
, optional) — An optional trainer that should be used to train our Model -
length (
int
, optional) — The total number of sequences in the iterator. This is used to provide meaningful progress tracking
Train the Tokenizer using the provided iterator.
You can provide anything that is a Python Iterator
- A list of sequences
List[str]
- A generator that yields
str
orList[str]
- A Numpy array of strings
- β¦