Pix2Pix Zero
Zero-shot Image-to-Image Translation is by Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan Zhu.
The abstract from the paper is:
Large-scale text-to-image generative models have shown their remarkable ability to synthesize diverse and high-quality images. However, it is still challenging to directly apply these models for editing real images for two reasons. First, it is hard for users to come up with a perfect text prompt that accurately describes every visual detail in the input image. Second, while existing models can introduce desirable changes in certain regions, they often dramatically alter the input content and introduce unexpected changes in unwanted regions. In this work, we propose pix2pix-zero, an image-to-image translation method that can preserve the content of the original image without manual prompting. We first automatically discover editing directions that reflect desired edits in the text embedding space. To preserve the general content structure after editing, we further propose cross-attention guidance, which aims to retain the cross-attention maps of the input image throughout the diffusion process. In addition, our method does not need additional training for these edits and can directly use the existing pre-trained text-to-image diffusion model. We conduct extensive experiments and show that our method outperforms existing and concurrent works for both real and synthetic image editing.
You can find additional information about Pix2Pix Zero on the project page, original codebase, and try it out in a demo.
Tips
- The pipeline can be conditioned on real input images. Check out the code examples below to know more.
- The pipeline exposes two arguments namely
source_embeds
andtarget_embeds
that let you control the direction of the semantic edits in the final image to be generated. Letβs say, you wanted to translate from βcatβ to βdogβ. In this case, the edit direction will be βcat -> dogβ. To reflect this in the pipeline, you simply have to set the embeddings related to the phrases including βcatβ tosource_embeds
and βdogβ totarget_embeds
. Refer to the code example below for more details. - When youβre using this pipeline from a prompt, specify the source concept in the prompt. Taking the above example, a valid input prompt would be: βa high resolution painting of a cat in the style of van goughβ.
- If you wanted to reverse the direction in the example above, i.e., βdog -> catβ, then itβs recommended to:
- Swap the
source_embeds
andtarget_embeds
. - Change the input prompt to include βdogβ.
- Swap the
- To learn more about how the source and target embeddings are generated, refer to the original paper. Below, we also provide some directions on how to generate the embeddings.
- Note that the quality of the outputs generated with this pipeline is dependent on how good the
source_embeds
andtarget_embeds
are. Please, refer to this discussion for some suggestions on the topic.
Available Pipelines:
Pipeline | Tasks | Demo |
---|---|---|
StableDiffusionPix2PixZeroPipeline | Text-Based Image Editing | π€ Space |
Usage example
Based on an image generated with the input prompt
import requests
import torch
from diffusers import DDIMScheduler, StableDiffusionPix2PixZeroPipeline
def download(embedding_url, local_filepath):
r = requests.get(embedding_url)
with open(local_filepath, "wb") as f:
f.write(r.content)
model_ckpt = "CompVis/stable-diffusion-v1-4"
pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(
model_ckpt, conditions_input_image=False, torch_dtype=torch.float16
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.to("cuda")
prompt = "a high resolution painting of a cat in the style of van gogh"
src_embs_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/embeddings_sd_1.4/cat.pt"
target_embs_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/embeddings_sd_1.4/dog.pt"
for url in [src_embs_url, target_embs_url]:
download(url, url.split("/")[-1])
src_embeds = torch.load(src_embs_url.split("/")[-1])
target_embeds = torch.load(target_embs_url.split("/")[-1])
images = pipeline(
prompt,
source_embeds=src_embeds,
target_embeds=target_embeds,
num_inference_steps=50,
cross_attention_guidance_amount=0.15,
).images
images[0].save("edited_image_dog.png")
Based on an input image
When the pipeline is conditioned on an input image, we first obtain an inverted
noise from it using a DDIMInverseScheduler
with the help of a generated caption. Then
the inverted noise is used to start the generation process.
First, letβs load our pipeline:
import torch
from transformers import BlipForConditionalGeneration, BlipProcessor
from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionPix2PixZeroPipeline
captioner_id = "Salesforce/blip-image-captioning-base"
processor = BlipProcessor.from_pretrained(captioner_id)
model = BlipForConditionalGeneration.from_pretrained(captioner_id, torch_dtype=torch.float16, low_cpu_mem_usage=True)
sd_model_ckpt = "CompVis/stable-diffusion-v1-4"
pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(
sd_model_ckpt,
caption_generator=model,
caption_processor=processor,
torch_dtype=torch.float16,
safety_checker=None,
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)
pipeline.enable_model_cpu_offload()
Then, we load an input image for conditioning and obtain a suitable caption for it:
import requests
from PIL import Image
img_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/test_images/cats/cat_6.png"
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB").resize((512, 512))
caption = pipeline.generate_caption(raw_image)
Then we employ the generated caption and the input image to get the inverted noise:
generator = torch.manual_seed(0)
inv_latents = pipeline.invert(caption, image=raw_image, generator=generator).latents
Now, generate the image with edit directions:
# See the "Generating source and target embeddings" section below to
# automate the generation of these captions with a pre-trained model like Flan-T5 as explained below.
source_prompts = ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"]
target_prompts = ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"]
source_embeds = pipeline.get_embeds(source_prompts, batch_size=2)
target_embeds = pipeline.get_embeds(target_prompts, batch_size=2)
image = pipeline(
caption,
source_embeds=source_embeds,
target_embeds=target_embeds,
num_inference_steps=50,
cross_attention_guidance_amount=0.15,
generator=generator,
latents=inv_latents,
negative_prompt=caption,
).images[0]
image.save("edited_image.png")
Generating source and target embeddings
The authors originally used the GPT-3 API to generate the source and target captions for discovering edit directions. However, we can also leverage open source and public models for the same purpose. Below, we provide an end-to-end example with the Flan-T5 model for generating captions and CLIP for computing embeddings on the generated captions.
1. Load the generation model:
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl", device_map="auto", torch_dtype=torch.float16)
2. Construct a starting prompt:
source_concept = "cat"
target_concept = "dog"
source_text = f"Provide a caption for images containing a {source_concept}. "
"The captions should be in English and should be no longer than 150 characters."
target_text = f"Provide a caption for images containing a {target_concept}. "
"The captions should be in English and should be no longer than 150 characters."
Here, weβre interested in the βcat -> dogβ direction.
3. Generate captions:
We can use a utility like so for this purpose.
def generate_captions(input_prompt):
input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(
input_ids, temperature=0.8, num_return_sequences=16, do_sample=True, max_new_tokens=128, top_k=10
)
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
And then we just call it to generate our captions:
source_captions = generate_captions(source_text) target_captions = generate_captions(target_concept)
We encourage you to play around with the different parameters supported by the
generate()
method (documentation) for the generation quality you are looking for.
4. Load the embedding model:
Here, we need to use the same text encoder model used by the subsequent Stable Diffusion model.
from diffusers import StableDiffusionPix2PixZeroPipeline
pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
)
pipeline = pipeline.to("cuda")
tokenizer = pipeline.tokenizer
text_encoder = pipeline.text_encoder
5. Compute embeddings:
import torch
def embed_captions(sentences, tokenizer, text_encoder, device="cuda"):
with torch.no_grad():
embeddings = []
for sent in sentences:
text_inputs = tokenizer(
sent,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=None)[0]
embeddings.append(prompt_embeds)
return torch.concatenate(embeddings, dim=0).mean(dim=0).unsqueeze(0)
source_embeddings = embed_captions(source_captions, tokenizer, text_encoder)
target_embeddings = embed_captions(target_captions, tokenizer, text_encoder)
And youβre done! Here is a Colab Notebook that you can use to interact with the entire process.
Now, you can use these embeddings directly while calling the pipeline:
from diffusers import DDIMScheduler
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
images = pipeline(
prompt,
source_embeds=source_embeddings,
target_embeds=target_embeddings,
num_inference_steps=50,
cross_attention_guidance_amount=0.15,
).images
images[0].save("edited_image_dog.png")
StableDiffusionPix2PixZeroPipeline
class diffusers.StableDiffusionPix2PixZeroPipeline
< source >( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel scheduler: typing.Union[diffusers.schedulers.scheduling_ddpm.DDPMScheduler, diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler, diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler] feature_extractor: CLIPImageProcessor safety_checker: StableDiffusionSafetyChecker inverse_scheduler: DDIMInverseScheduler caption_generator: BlipForConditionalGeneration caption_processor: BlipProcessor requires_safety_checker: bool = True )
Parameters
- vae (AutoencoderKL) β Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
-
text_encoder (
CLIPTextModel
) β Frozen text-encoder. Stable Diffusion uses the text portion of CLIP, specifically the clip-vit-large-patch14 variant. -
tokenizer (
CLIPTokenizer
) β Tokenizer of class CLIPTokenizer. - unet (UNet2DConditionModel) β Conditional U-Net architecture to denoise the encoded image latents.
-
scheduler (SchedulerMixin) β
A scheduler to be used in combination with
unet
to denoise the encoded image latents. Can be one of DDIMScheduler, LMSDiscreteScheduler, EulerAncestralDiscreteScheduler, or DDPMScheduler. -
safety_checker (
StableDiffusionSafetyChecker
) β Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the model card for details. -
feature_extractor (
CLIPImageProcessor
) β Model that extracts features from generated images to be used as inputs for thesafety_checker
. - requires_safety_checker (bool) β Whether the pipeline requires a safety checker. We recommend setting it to True if youβre using the pipeline publicly.
Pipeline for pixel-levl image editing using Pix2Pix Zero. Based on Stable Diffusion.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
__call__
< source >(
prompt: typing.Union[str, typing.List[str], NoneType] = None
source_embeds: Tensor = None
target_embeds: Tensor = None
height: typing.Optional[int] = None
width: typing.Optional[int] = None
num_inference_steps: int = 50
guidance_scale: float = 7.5
negative_prompt: typing.Union[str, typing.List[str], NoneType] = None
num_images_per_prompt: typing.Optional[int] = 1
eta: float = 0.0
generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None
latents: typing.Optional[torch.FloatTensor] = None
prompt_embeds: typing.Optional[torch.FloatTensor] = None
negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None
cross_attention_guidance_amount: float = 0.1
output_type: typing.Optional[str] = 'pil'
return_dict: bool = True
callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = None
callback_steps: typing.Optional[int] = 1
cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None
)
β
StableDiffusionPipelineOutput or tuple
Parameters
-
prompt (
str
orList[str]
, optional) β The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds
. instead. -
source_embeds (
torch.Tensor
) β Source concept embeddings. Generation of the embeddings as per the original paper. Used in discovering the edit direction. -
target_embeds (
torch.Tensor
) β Target concept embeddings. Generation of the embeddings as per the original paper. Used in discovering the edit direction. -
height (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) β The height in pixels of the generated image. -
width (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) β The width in pixels of the generated image. -
num_inference_steps (
int
, optional, defaults to 50) β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. -
guidance_scale (
float
, optional, defaults to 7.5) β Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scale
is defined asw
of equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the textprompt
, usually at the expense of lower image quality. -
negative_prompt (
str
orList[str]
, optional) β The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). -
num_images_per_prompt (
int
, optional, defaults to 1) β The number of images to generate per prompt. -
eta (
float
, optional, defaults to 0.0) β Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to schedulers.DDIMScheduler, will be ignored for others. -
generator (
torch.Generator
orList[torch.Generator]
, optional) β One or a list of torch generator(s) to make generation deterministic. -
latents (
torch.FloatTensor
, optional) β Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator
. -
prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. -
negative_prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument. -
cross_attention_guidance_amount (
float
, defaults to 0.1) β Amount of guidance needed from the reference cross-attention maps. -
output_type (
str
, optional, defaults to"pil"
) β The output format of the generate image. Choose between PIL:PIL.Image.Image
ornp.array
. -
return_dict (
bool
, optional, defaults toTrue
) β Whether or not to return a StableDiffusionPipelineOutput instead of a plain tuple. -
callback (
Callable
, optional) β A function that will be called everycallback_steps
steps during inference. The function will be called with the following arguments:callback(step: int, timestep: int, latents: torch.FloatTensor)
. -
callback_steps (
int
, optional, defaults to 1) β The frequency at which thecallback
function will be called. If not specified, the callback will be called at every step.
Returns
StableDiffusionPipelineOutput or tuple
StableDiffusionPipelineOutput if return_dict
is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of
bools denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the
safety_checker`.
Function invoked when calling the pipeline for generation.
Examples:
>>> import requests
>>> import torch
>>> from diffusers import DDIMScheduler, StableDiffusionPix2PixZeroPipeline
>>> def download(embedding_url, local_filepath):
... r = requests.get(embedding_url)
... with open(local_filepath, "wb") as f:
... f.write(r.content)
>>> model_ckpt = "CompVis/stable-diffusion-v1-4"
>>> pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16)
>>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
>>> pipeline.to("cuda")
>>> prompt = "a high resolution painting of a cat in the style of van gough"
>>> source_emb_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/cat.pt"
>>> target_emb_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/dog.pt"
>>> for url in [source_emb_url, target_emb_url]:
... download(url, url.split("/")[-1])
>>> src_embeds = torch.load(source_emb_url.split("/")[-1])
>>> target_embeds = torch.load(target_emb_url.split("/")[-1])
>>> images = pipeline(
... prompt,
... source_embeds=src_embeds,
... target_embeds=target_embeds,
... num_inference_steps=50,
... cross_attention_guidance_amount=0.15,
... ).images
>>> images[0].save("edited_image_dog.png")
Constructs the edit direction to steer the image generation process semantically.
encode_prompt
< source >( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None lora_scale: typing.Optional[float] = None )
Parameters
-
prompt (
str
orList[str]
, optional) β prompt to be encoded device β (torch.device
): torch device -
num_images_per_prompt (
int
) β number of images that should be generated per prompt -
do_classifier_free_guidance (
bool
) β whether to use classifier free guidance or not -
negative_prompt (
str
orList[str]
, optional) β The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). -
prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. -
negative_prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument. -
lora_scale (
float
, optional) β A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
Encodes the prompt into text encoder hidden states.
( images )
Generates caption for a given image.
invert
< source >( prompt: typing.Optional[str] = None image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.FloatTensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.FloatTensor]] = None num_inference_steps: int = 50 guidance_scale: float = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None cross_attention_guidance_amount: float = 0.1 output_type: typing.Optional[str] = 'pil' return_dict: bool = True callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = None callback_steps: typing.Optional[int] = 1 cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None lambda_auto_corr: float = 20.0 lambda_kl: float = 20.0 num_reg_steps: int = 5 num_auto_corr_rolls: int = 5 )
Parameters
-
prompt (
str
orList[str]
, optional) β The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds
. instead. -
image (
torch.FloatTensor
np.ndarray
,PIL.Image.Image
,List[torch.FloatTensor]
,List[PIL.Image.Image]
, orList[np.ndarray]
) βImage
, or tensor representing an image batch which will be used for conditioning. Can also accept image latents asimage
, if passing latents directly, it will not be encoded again. -
num_inference_steps (
int
, optional, defaults to 50) β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. -
guidance_scale (
float
, optional, defaults to 1) β Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scale
is defined asw
of equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the textprompt
, usually at the expense of lower image quality. -
generator (
torch.Generator
orList[torch.Generator]
, optional) β One or a list of torch generator(s) to make generation deterministic. -
latents (
torch.FloatTensor
, optional) β Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator
. -
prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. -
cross_attention_guidance_amount (
float
, defaults to 0.1) β Amount of guidance needed from the reference cross-attention maps. -
output_type (
str
, optional, defaults to"pil"
) β The output format of the generate image. Choose between PIL:PIL.Image.Image
ornp.array
. -
return_dict (
bool
, optional, defaults toTrue
) β Whether or not to return a StableDiffusionPipelineOutput instead of a plain tuple. -
callback (
Callable
, optional) β A function that will be called everycallback_steps
steps during inference. The function will be called with the following arguments:callback(step: int, timestep: int, latents: torch.FloatTensor)
. -
callback_steps (
int
, optional, defaults to 1) β The frequency at which thecallback
function will be called. If not specified, the callback will be called at every step. -
lambda_auto_corr (
float
, optional, defaults to 20.0) β Lambda parameter to control auto correction -
lambda_kl (
float
, optional, defaults to 20.0) β Lambda parameter to control KullbackβLeibler divergence output -
num_reg_steps (
int
, optional, defaults to 5) β Number of regularization loss steps -
num_auto_corr_rolls (
int
, optional, defaults to 5) β Number of auto correction roll steps
Function used to generate inverted latents given a prompt and image.
Examples:
>>> import torch
>>> from transformers import BlipForConditionalGeneration, BlipProcessor
>>> from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionPix2PixZeroPipeline
>>> import requests
>>> from PIL import Image
>>> captioner_id = "Salesforce/blip-image-captioning-base"
>>> processor = BlipProcessor.from_pretrained(captioner_id)
>>> model = BlipForConditionalGeneration.from_pretrained(
... captioner_id, torch_dtype=torch.float16, low_cpu_mem_usage=True
... )
>>> sd_model_ckpt = "CompVis/stable-diffusion-v1-4"
>>> pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(
... sd_model_ckpt,
... caption_generator=model,
... caption_processor=processor,
... torch_dtype=torch.float16,
... safety_checker=None,
... )
>>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
>>> pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)
>>> pipeline.enable_model_cpu_offload()
>>> img_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/test_images/cats/cat_6.png"
>>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB").resize((512, 512))
>>> # generate caption
>>> caption = pipeline.generate_caption(raw_image)
>>> # "a photography of a cat with flowers and dai dai daie - daie - daie kasaii"
>>> inv_latents = pipeline.invert(caption, image=raw_image).latents
>>> # we need to generate source and target embeds
>>> source_prompts = ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"]
>>> target_prompts = ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"]
>>> source_embeds = pipeline.get_embeds(source_prompts)
>>> target_embeds = pipeline.get_embeds(target_prompts)
>>> # the latents can then be used to edit a real image
>>> # when using Stable Diffusion 2 or other models that use v-prediction
>>> # set `cross_attention_guidance_amount` to 0.01 or less to avoid input latent gradient explosion
>>> image = pipeline(
... caption,
... source_embeds=source_embeds,
... target_embeds=target_embeds,
... num_inference_steps=50,
... cross_attention_guidance_amount=0.15,
... generator=generator,
... latents=inv_latents,
... negative_prompt=caption,
... ).images[0]
>>> image.save("edited_image.png")