The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: UnexpectedError
Need help to make the dataset viewer work? Open a discussion for direct support.
-5KQ66BBWC4
string
| 0902
int64
| 0.077
float64
| 0.151
float64
| 0.283
float64
| 0.811
float64
| 80
float64
| 1
float64
|
---|---|---|---|---|---|---|---|
"-5KQ66BBWC4" | 902 | 0.077 | 0.151 | 0.283 | 0.811 | 9 | 1 |
"-5KQ66BBWC4" | 902 | 0.226 | 0.032 | 0.366 | 0.497 | 12 | 0 |
"-5KQ66BBWC4" | 902 | 0.226 | 0.032 | 0.366 | 0.497 | 17 | 0 |
"-5KQ66BBWC4" | 902 | 0.226 | 0.032 | 0.366 | 0.497 | 80 | 0 |
"-5KQ66BBWC4" | 902 | 0.332 | 0.194 | 0.481 | 0.891 | 80 | 2 |
"-5KQ66BBWC4" | 902 | 0.332 | 0.194 | 0.481 | 0.891 | 9 | 2 |
"-5KQ66BBWC4" | 902 | 0.505 | 0.105 | 0.653 | 0.78 | 9 | 3 |
"-5KQ66BBWC4" | 902 | 0.626 | 0.146 | 0.805 | 0.818 | 9 | 5 |
"-5KQ66BBWC4" | 902 | 0.805 | 0.222 | 0.997 | 1 | 80 | 4 |
"-5KQ66BBWC4" | 902 | 0.805 | 0.222 | 0.997 | 1 | 9 | 4 |
"-5KQ66BBWC4" | 903 | 0 | 0.162 | 0.177 | 0.804 | 80 | 6 |
"-5KQ66BBWC4" | 903 | 0 | 0.162 | 0.177 | 0.804 | 9 | 6 |
"-5KQ66BBWC4" | 903 | 0.141 | 0.158 | 0.298 | 0.825 | 12 | 8 |
"-5KQ66BBWC4" | 903 | 0.141 | 0.158 | 0.298 | 0.825 | 80 | 8 |
"-5KQ66BBWC4" | 903 | 0.226 | 0.026 | 0.363 | 0.512 | 12 | 0 |
"-5KQ66BBWC4" | 903 | 0.226 | 0.026 | 0.363 | 0.512 | 80 | 0 |
"-5KQ66BBWC4" | 903 | 0.328 | 0.182 | 0.484 | 0.895 | 80 | 2 |
"-5KQ66BBWC4" | 903 | 0.328 | 0.182 | 0.484 | 0.895 | 9 | 2 |
"-5KQ66BBWC4" | 903 | 0.507 | 0.147 | 0.666 | 0.789 | 80 | 7 |
"-5KQ66BBWC4" | 903 | 0.507 | 0.147 | 0.666 | 0.789 | 9 | 7 |
"-5KQ66BBWC4" | 903 | 0.642 | 0.158 | 0.791 | 0.859 | 9 | 10 |
"-5KQ66BBWC4" | 903 | 0.785 | 0.15 | 0.886 | 0.703 | 12 | 11 |
"-5KQ66BBWC4" | 903 | 0.785 | 0.15 | 0.886 | 0.703 | 80 | 11 |
"-5KQ66BBWC4" | 903 | 0.802 | 0.267 | 0.994 | 0.971 | 80 | 4 |
"-5KQ66BBWC4" | 903 | 0.802 | 0.267 | 0.994 | 0.971 | 9 | 4 |
"-5KQ66BBWC4" | 903 | 0.865 | 0.158 | 0.991 | 0.436 | 80 | 9 |
"-5KQ66BBWC4" | 903 | 0.865 | 0.158 | 0.991 | 0.436 | 9 | 9 |
"-5KQ66BBWC4" | 904 | 0.217 | 0.008 | 0.982 | 0.966 | 12 | 4 |
"-5KQ66BBWC4" | 904 | 0.217 | 0.008 | 0.982 | 0.966 | 80 | 4 |
"-5KQ66BBWC4" | 905 | 0.044 | 0.056 | 0.236 | 0.891 | 12 | 13 |
"-5KQ66BBWC4" | 905 | 0.192 | 0.072 | 0.411 | 0.97 | 12 | 15 |
"-5KQ66BBWC4" | 905 | 0.192 | 0.072 | 0.411 | 0.97 | 80 | 15 |
"-5KQ66BBWC4" | 905 | 0.392 | 0.033 | 0.556 | 0.618 | 14 | 12 |
"-5KQ66BBWC4" | 905 | 0.392 | 0.033 | 0.556 | 0.618 | 17 | 12 |
"-5KQ66BBWC4" | 905 | 0.614 | 0.078 | 0.826 | 0.975 | 12 | 14 |
"-5KQ66BBWC4" | 905 | 0.614 | 0.078 | 0.826 | 0.975 | 80 | 14 |
"-5KQ66BBWC4" | 906 | 0.03 | 0.078 | 0.225 | 0.876 | 12 | 13 |
"-5KQ66BBWC4" | 906 | 0.191 | 0.073 | 0.399 | 0.971 | 12 | 15 |
"-5KQ66BBWC4" | 906 | 0.408 | 0.008 | 0.586 | 0.639 | 14 | 12 |
"-5KQ66BBWC4" | 906 | 0.408 | 0.008 | 0.586 | 0.639 | 17 | 12 |
"-5KQ66BBWC4" | 906 | 0.614 | 0.075 | 0.821 | 0.999 | 12 | 14 |
"-5KQ66BBWC4" | 906 | 0.859 | 0.104 | 0.996 | 0.885 | 12 | 16 |
"-5KQ66BBWC4" | 907 | 0.062 | 0.074 | 0.234 | 0.926 | 12 | 13 |
"-5KQ66BBWC4" | 907 | 0.19 | 0.109 | 0.396 | 0.995 | 12 | 15 |
"-5KQ66BBWC4" | 907 | 0.42 | 0.115 | 0.616 | 0.883 | 14 | 12 |
"-5KQ66BBWC4" | 907 | 0.42 | 0.115 | 0.616 | 0.883 | 17 | 12 |
"-5KQ66BBWC4" | 907 | 0.615 | 0.082 | 0.823 | 1 | 12 | 14 |
"-5KQ66BBWC4" | 908 | 0.046 | 0.072 | 0.34 | 1 | 12 | 15 |
"-5KQ66BBWC4" | 908 | 0.046 | 0.072 | 0.34 | 1 | 80 | 15 |
"-5KQ66BBWC4" | 908 | 0.191 | 0.07 | 0.32 | 0.348 | 12 | 17 |
"-5KQ66BBWC4" | 908 | 0.38 | 0.086 | 0.693 | 0.991 | 14 | 12 |
"-5KQ66BBWC4" | 908 | 0.38 | 0.086 | 0.693 | 0.991 | 17 | 12 |
"-5KQ66BBWC4" | 908 | 0.634 | 0.06 | 0.919 | 0.762 | 12 | 14 |
"-5KQ66BBWC4" | 909 | 0.118 | 0.01 | 0.889 | 0.984 | 12 | 12 |
"-5KQ66BBWC4" | 909 | 0.118 | 0.01 | 0.889 | 0.984 | 17 | 12 |
"-5KQ66BBWC4" | 909 | 0.118 | 0.01 | 0.889 | 0.984 | 79 | 12 |
"-5KQ66BBWC4" | 909 | 0.778 | 0.035 | 1 | 0.966 | 12 | 14 |
"-5KQ66BBWC4" | 910 | 0.053 | 0.045 | 0.824 | 0.983 | 12 | 12 |
"-5KQ66BBWC4" | 910 | 0.053 | 0.045 | 0.824 | 0.983 | 17 | 12 |
"-5KQ66BBWC4" | 910 | 0.053 | 0.045 | 0.824 | 0.983 | 79 | 12 |
"-5KQ66BBWC4" | 911 | 0.037 | 0.025 | 0.826 | 0.978 | 12 | 12 |
"-5KQ66BBWC4" | 911 | 0.037 | 0.025 | 0.826 | 0.978 | 17 | 12 |
"-5KQ66BBWC4" | 911 | 0.037 | 0.025 | 0.826 | 0.978 | 79 | 12 |
"-5KQ66BBWC4" | 912 | 0 | 0.114 | 0.602 | 1 | 12 | 12 |
"-5KQ66BBWC4" | 912 | 0 | 0.114 | 0.602 | 1 | 74 | 12 |
"-5KQ66BBWC4" | 912 | 0 | 0.114 | 0.602 | 1 | 80 | 12 |
"-5KQ66BBWC4" | 912 | 0.374 | 0.151 | 0.874 | 0.982 | 12 | 18 |
"-5KQ66BBWC4" | 912 | 0.374 | 0.151 | 0.874 | 0.982 | 79 | 18 |
"-5KQ66BBWC4" | 912 | 0.374 | 0.151 | 0.874 | 0.982 | 80 | 18 |
"-5KQ66BBWC4" | 913 | 0 | 0 | 0.282 | 0.638 | 12 | 19 |
"-5KQ66BBWC4" | 913 | 0 | 0 | 0.282 | 0.638 | 74 | 19 |
"-5KQ66BBWC4" | 913 | 0 | 0.147 | 0.564 | 0.992 | 12 | 12 |
"-5KQ66BBWC4" | 913 | 0 | 0.147 | 0.564 | 0.992 | 74 | 12 |
"-5KQ66BBWC4" | 913 | 0 | 0.147 | 0.564 | 0.992 | 80 | 12 |
"-5KQ66BBWC4" | 913 | 0.385 | 0.15 | 0.883 | 0.987 | 12 | 18 |
"-5KQ66BBWC4" | 913 | 0.385 | 0.15 | 0.883 | 0.987 | 79 | 18 |
"-5KQ66BBWC4" | 913 | 0.385 | 0.15 | 0.883 | 0.987 | 80 | 18 |
"-5KQ66BBWC4" | 914 | 0 | 0.137 | 0.6 | 1 | 12 | 12 |
"-5KQ66BBWC4" | 914 | 0 | 0.137 | 0.6 | 1 | 74 | 12 |
"-5KQ66BBWC4" | 914 | 0 | 0.137 | 0.6 | 1 | 79 | 12 |
"-5KQ66BBWC4" | 914 | 0 | 0.137 | 0.6 | 1 | 80 | 12 |
"-5KQ66BBWC4" | 914 | 0.384 | 0.161 | 0.882 | 0.995 | 12 | 18 |
"-5KQ66BBWC4" | 914 | 0.384 | 0.161 | 0.882 | 0.995 | 79 | 18 |
"-5KQ66BBWC4" | 914 | 0.384 | 0.161 | 0.882 | 0.995 | 80 | 18 |
"-5KQ66BBWC4" | 915 | 0.29 | 0.217 | 0.68 | 0.975 | 12 | 20 |
"-5KQ66BBWC4" | 915 | 0.29 | 0.217 | 0.68 | 0.975 | 17 | 20 |
"-5KQ66BBWC4" | 915 | 0.29 | 0.217 | 0.68 | 0.975 | 79 | 20 |
"-5KQ66BBWC4" | 915 | 0.29 | 0.217 | 0.68 | 0.975 | 80 | 20 |
"-5KQ66BBWC4" | 915 | 0.541 | 0.211 | 0.657 | 0.447 | 12 | 23 |
"-5KQ66BBWC4" | 915 | 0.541 | 0.211 | 0.657 | 0.447 | 74 | 23 |
"-5KQ66BBWC4" | 915 | 0.541 | 0.211 | 0.657 | 0.447 | 80 | 23 |
"-5KQ66BBWC4" | 915 | 0.612 | 0.246 | 0.811 | 0.969 | 12 | 21 |
"-5KQ66BBWC4" | 915 | 0.612 | 0.246 | 0.811 | 0.969 | 74 | 21 |
"-5KQ66BBWC4" | 915 | 0.612 | 0.246 | 0.811 | 0.969 | 80 | 21 |
"-5KQ66BBWC4" | 915 | 0.7 | 0.077 | 1 | 0.991 | 12 | 22 |
"-5KQ66BBWC4" | 915 | 0.7 | 0.077 | 1 | 0.991 | 74 | 22 |
"-5KQ66BBWC4" | 916 | 0.09 | 0.304 | 0.296 | 1 | 12 | 25 |
"-5KQ66BBWC4" | 916 | 0.09 | 0.304 | 0.296 | 1 | 74 | 25 |
"-5KQ66BBWC4" | 916 | 0.09 | 0.304 | 0.296 | 1 | 80 | 25 |
"-5KQ66BBWC4" | 916 | 0.297 | 0.211 | 0.666 | 0.978 | 12 | 20 |
Dataset Card for CLIP-Kinetics70
Dataset Description
Dataset Summary
CLIP-Kinetics700 is a compressed version of the Kinetics700 dataset using OpenAI's CLIP model.
The original dataset is ~700 GB making it difficult to use and hold in memory on one machine. By downsampling each video to 1 FPS and encoding the frames using CLIP we we're able to compress the dataset to ~8 GB making it very memory-friendly and easy to use.
Dataset Preprocessing
clip-video-encode is a tool you can use to easily and efficiently compute CLIP embeddings from video frames. We used it to generate the embeddings for this dataset.
Dataset Structure
Data Format
We formatted this as a WebDataset for better data-loading performance when training the models. Each split contains a list of tar files each with 10000 data samples. This format can be read and used easily using the EmbeddingWebDatasetReader from clip-video-encode.
CLIP-Kinetics700
βββ splits.csv
βββ ds_00000.tar
| βββ vid_00000.npy
| βββ vid_00000.txt
| βββ vid_00000.json
| βββ vid_00001.npy
| βββ vid_00001.txt
| βββ vid_00001.json
| βββ ...
| βββ vid_10000.npy
| βββ vid_10000.txt
| βββ vid_10000.json
βββ ds_00001.tar
| βββ vid_10001.npy
| βββ vid_10001.txt
| βββ vid_10001.json
β ...
...
Data Fields
- vid.npy: the numpy array with the per-frame embeddings. Shape -> (n_frames, 512)
- vid.cap: the "caption" of the video. In this case it is the Kinetics700 label.
- vid.json: additional metadata - YouTube video ID, start time, end time.
Data Splits
- Train - 536489 samples | 54 tar's
- Validation - 33966 samples | 4 tar's
- Test - 64532 samples | 7 tar's
Dataset Creation
Source Data
Data was sourced from DeepMind's Kinetics700 dataset and downloaded using this convenient repository.
Simple Experiments
Using this repository we evaluate CLIP-Kinetics700 with the following simple methods:
Zero-shot Evaluation
Accuracy | |
---|---|
Top-1 | 0.31 |
Top-5 | 0.56 |
mean(Top1, Top5) | 0.44 |
Linear-probe Evaluation
Accuracy | |
---|---|
Top-1 | 0.41 |
Top-5 | 0.65 |
mean(Top1, Top5) | 0.53 |
- Downloads last month
- 61