Datasets:
id
int32
1
28
| image
image
| mask
image
| bboxes
string
|
---|---|---|---|
1 | "[{'type': 'box', 'label': 'pig_face', 'points': [(59.5, 18.27), (142.3, 109.0)]}]" |
||
2 | "[{'type': 'box', 'label': 'pig_face', 'points': [(77.27, -8.82), (260.37, 228.82)]}]" |
||
3 | "[{'type': 'box', 'label': 'pig_face', 'points': [(348.8, 98.03), (580.0, 342.41)]}]" |
||
4 | "[{'type': 'box', 'label': 'pig_face', 'points': [(44.0, 114.1), (141.4, 185.0)]}]" |
||
5 | "[{'type': 'box', 'label': 'pig_face', 'points': [(22.0, 112.6), (92.3, 183.1)]}]" |
||
6 | "[{'type': 'box', 'label': 'pig_face', 'points': [(31.79, 386.3), (438.6, 699.23)]}]" |
||
7 | "[{'type': 'box', 'label': 'pig_face', 'points': [(74.54, 31.62), (114.23, 68.22)]}]" |
||
8 | "[{'type': 'box', 'label': 'pig_face', 'points': [(39.2, 51.2), (103.65, 121.7)]}, {'type': 'box', 'label': 'pig_face', 'points': [(72.06, 35.3), (131.5, 99.8)]}]" |
||
9 | "[{'type': 'box', 'label': 'pig_face', 'points': [(4.92, 79.1), (88.6, 148.0)]}]" |
||
10 | "[{'type': 'box', 'label': 'pig_face', 'points': [(31.3, 111.5), (127.2, 182.0)]}]" |
||
11 | "[{'type': 'box', 'label': 'pig_face', 'points': [(11.9, 5.5), (54.6, 49.9)]}]" |
||
12 | "[{'type': 'box', 'label': 'pig_face', 'points': [(33.1, 47.1), (76.7, 79.8)]}]" |
||
13 | "[{'type': 'box', 'label': 'pig_face', 'points': [(340.9, 3.4), (457.6, 148.5)]}]" |
||
14 | "[{'type': 'box', 'label': 'pig_face', 'points': [(2.52, 59.68), (75.89, 129.04)]}]" |
||
15 | "[{'type': 'box', 'label': 'pig_face', 'points': [(77.71, 45.3), (152.29, 104.7)]}]" |
||
16 | "[{'type': 'box', 'label': 'pig_face', 'points': [(24.05, 112.8), (135.96, 210.42)]}]" |
||
17 | "[{'type': 'box', 'label': 'pig_face', 'points': [(39.04, 3.9), (108.5, 56.1)]}]" |
||
18 | "[{'type': 'box', 'label': 'pig_face', 'points': [(308.64, 12.58), (541.95, 281.96)]}]" |
||
19 | "[{'type': 'box', 'label': 'pig_face', 'points': [(158.5, 20.7), (241.1, 98.6)]}]" |
||
20 | "[{'type': 'box', 'label': 'pig_face', 'points': [(41.7, 57.61), (119.71, 125.9)]}]" |
||
21 | "[{'type': 'box', 'label': 'pig_face', 'points': [(8.44, 68.37), (55.2, 121.44)]}, {'type': 'box', 'label': 'pig_face', 'points': [(202.08, 96.4), (256.89, 146.26)]}]" |
||
22 | "[{'type': 'box', 'label': 'pig_face', 'points': [(428.9, 198.3), (606.9, 466.8)]}, {'type': 'box', 'label': 'pig_face', 'points': [(9.5, 43.3), (198.2, 241.2)]}, {'type': 'box', 'label': 'pig_face', 'points': [(149.31, 242.2), (343.4, 503.3)]}]" |
||
24 | "[{'type': 'box', 'label': 'pig_face', 'points': [(17.97, 115.29), (101.75, 174.11)]}, {'type': 'box', 'label': 'pig_face', 'points': [(151.13, 78.35), (216.07, 126.15)]}]" |
||
25 | "[{'type': 'box', 'label': 'pig_face', 'points': [(0.6, 56.9), (352.1, 395.4)]}]" |
||
26 | "[{'type': 'box', 'label': 'pig_face', 'points': [(31.5, 131.6), (273.8, 280.0)]}]" |
||
27 | "[{'type': 'box', 'label': 'pig_face', 'points': [(129.2, 1.8), (235.0, 87.26)]}]" |
||
28 | "[{'type': 'box', 'label': 'pig_face', 'points': [(19.34, 80.31), (266.85, 313.91)]}]" |
Pigs Detection Dataset
The dataset is a collection of images along with corresponding bounding box annotations that are specifically curated for detecting pigs' heads in images. The dataset covers different pig breeds, sizes, and orientations, providing a comprehensive representation of pig appearances.
The pig detection dataset provides a valuable resource for researchers working on pig detection tasks. It offers a diverse collection of annotated images, allowing for comprehensive algorithm development, evaluation, and benchmarking, ultimately aiding in the development of accurate and robust models.
Get the dataset
This is just an example of the data
Leave a request on https://trainingdata.pro/data-market to discuss your requirements, learn about the price and buy the dataset.
Dataset structure
- images - contains of original images of pigs
- boxes - includes bounding box labeling for the original images
- annotations.xml - contains coordinates of the bounding boxes and labels, created for the original photo
Data Format
Each image from images
folder is accompanied by an XML-annotation in the annotations.xml
file indicating the coordinates of the bounding boxes for pigs detection. For each point, the x and y coordinates are provided.
Example of XML file structure
Pig Detection might be made in accordance with your requirements.
**TrainingData**
More datasets in TrainingData's Kaggle account: https://www.kaggle.com/trainingdatapro/datasets
TrainingData's GitHub: https://github.com/Trainingdata-datamarket/TrainingData_All_datasets
- Downloads last month
- 5