image_id
uint32
0
14
| image
image
| mask
image
| key_points
string
|
---|---|---|---|
0 | "[(1579.99, 2153.33), (2070.72, 2238.82), (1751.13, 2174.45), (1237.3, 2259.0), (1414.29, 2238.1), (1772.8, 2326.6), (1486.7, 2287.4), (1680.73, 2698.0), (1988.79, 2339.85), (1933.82, 2308.8), (1647.19, 2905.14), (1429.2, 2815.38), (1803.7, 2863.1), (1760.49, 2467.14), (1117.21, 2135.16)]" |
||
1 | "[(6095.8, 1423.8), (6182.49, 1377.17), (6362.1, 1403.5), (5789.2, 1419.8), (5579.48, 1364.72), (5521.36, 1401.04), (5936.41, 1719.36), (6205.32, 1994.66), (5353.8, 1267.6), (5843.3, 1272.3), (6498.7, 1280.6), (6057.5, 1271.2), (5616.7, 1925.9), (5882.96, 1952.36), (5879.84, 2089.36)]" |
||
2 | "[(2741.2, 1086.6), (2813.89, 1150.98), (2924.59, 1110.64), (3005.9, 1111.64), (2596.95, 1175.97), (2487.61, 1151.08), (2410.7, 1169.66), (2721.21, 1426.78), (2948.39, 1540.12), (2545.09, 1588.63), (2732.0, 1582.67), (2742.44, 1697.5), (2304.8, 1100.8), (2631.3, 1088.9), (3101.5, 1041.5)]" |
||
3 | "[(2649.58, 2283.26), (2073.09, 2274.57), (2368.7, 2228.2), (2372.18, 2385.85), (1735.3, 1502.1), (2210.1, 1417.8), (3009.5, 1461.1), (2871.71, 1575.29), (2733.07, 1549.58), (2570.39, 1593.19), (2021.5, 1561.51), (2193.29, 1596.77), (1886.26, 1586.47), (2527.86, 1420.8), (2387.04, 1929.65)]" |
||
4 | "[(841.3, 363.6), (1029.3, 366.0), (1041.48, 406.55), (1078.41, 394.76), (1116.52, 399.79), (945.33, 404.81), (911.09, 393.78), (873.92, 399.6), (1136.64, 358.59), (996.93, 488.11), (1070.44, 558.05), (914.95, 562.87), (992.98, 553.72), (995.34, 608.12), (958.6, 363.1)]" |
||
5 | "[(1956.66, 2408.29), (1955.21, 2250.85), (1727.79, 2275.63), (2192.68, 2291.81), (1948.64, 2018.97), (1798.1, 1597.17), (2500.28, 1521.85), (2083.35, 1581.62), (1523.46, 1686.03), (1640.72, 1666.62), (1793.0, 1712.01), (2365.83, 1650.34), (2254.5, 1647.0), (2112.74, 1708.52), (1387.4, 1563.1)]" |
||
6 | "[(1860.3, 1215.3), (2092.99, 1297.25), (2189.8, 1313.93), (1701.69, 1345.64), (1592.42, 1323.01), (1491.83, 1345.51), (1350.79, 1299.79), (1828.69, 1601.44), (2119.85, 1809.94), (1593.46, 1829.84), (1840.47, 1777.23), (1853.05, 1995.66), (1970.77, 1331.48), (1737.3, 1225.5), (2352.6, 1273.5)]" |
||
7 | "[(1054.62, 1189.34), (1352.1, 1236.13), (1615.59, 1205.52), (1736.95, 1229.79), (972.37, 1146.19), (824.04, 1152.93), (1175.02, 968.1), (997.93, 956.45), (792.88, 1525.01), (1262.63, 2113.13), (790.55, 2032.98), (848.8, 1918.8), (816.18, 2161.13), (1910.6, 1023.5), (761.1, 882.2)]" |
||
8 | "[(2408.57, 2002.99), (2901.3, 2002.99), (2665.42, 1639.51), (3212.82, 1252.66), (2822.68, 1253.11), (2274.36, 1388.58), (2380.1, 1364.31), (2507.5, 1406.78), (3072.6, 1378.17), (2945.19, 1363.44), (2809.81, 1408.34), (2657.18, 1914.63), (2651.94, 2109.78), (2514.2, 1239.5), (2122.5, 1284.6)]" |
||
9 | "[(2453.35, 1577.94), (3028.21, 1669.69), (3205.45, 1653.68), (3311.25, 1691.13), (2704.55, 1634.02), (2595.0, 1584.4), (2976.72, 1500.23), (3450.47, 1635.99), (2688.35, 1454.35), (2344.12, 1489.0), (2715.17, 1989.82), (3094.02, 2312.05), (2512.93, 2222.53), (2754.26, 2203.65), (2716.51, 2469.79)]" |
||
10 | "[(2716.01, 2837.13), (2340.36, 4267.9), (2316.0, 4008.03), (2027.7, 4062.85), (2680.23, 4003.97), (2256.41, 3648.67), (1336.02, 2789.19), (2085.7, 2791.22), (3110.99, 2662.63), (2383.47, 2787.83), (1610.6, 2906.64), (1801.53, 2883.15), (2010.86, 2951.78), (2917.71, 2858.67), (2512.16, 2931.22)]" |
||
11 | "[(2223.14, 2242.75), (2010.58, 2318.26), (2428.98, 2260.08), (1436.2, 2350.76), (1212.75, 2299.93), (1006.45, 2346.25), (2590.49, 2016.38), (1452.44, 2059.0), (794.58, 2110.25), (1733.93, 2845.74), (2185.48, 3252.36), (1374.49, 3279.31), (1754.15, 3236.63), (1766.96, 3481.05), (1921.9, 2045.6)]" |
||
12 | "[(4292.7, 1297.58), (4137.78, 1241.98), (4072.76, 1271.24), (4521.09, 1174.85), (4892.34, 1172.76), (3952.15, 1138.71), (4433.96, 1565.42), (4587.25, 1818.25), (4248.71, 1828.1), (4447.68, 1742.27), (4437.93, 1888.57), (4635.0, 1298.3), (4344.8, 1152.8), (4550.35, 1329.28), (4783.13, 1339.52)]" |
||
13 | "[(1675.25, 2493.81), (2120.39, 2417.32), (2529.17, 2407.29), (1887.16, 2418.57), (1448.29, 2393.49), (2007.69, 2924.96), (2303.21, 3063.09), (1657.1, 3079.0), (1994.14, 3095.59), (2301.5, 2506.6), (1973.08, 3313.78), (2141.2, 2552.49), (2426.35, 2522.65), (1842.02, 2541.46), (1552.36, 2512.62)]" |
||
14 | "[(1351.6, 1665.24), (1344.29, 2126.19), (1316.25, 1968.38), (1078.49, 2014.06), (1463.37, 1959.66), (1343.25, 1843.79), (915.61, 1623.0), (1188.15, 1576.28), (1535.1, 1523.5), (1345.7, 1549.9), (981.38, 1704.89), (1051.48, 1686.37), (1157.63, 1693.38), (1501.87, 1635.31), (1418.35, 1638.32)]" |
Facial Keypoints
The dataset is designed for computer vision and machine learning tasks involving the identification and analysis of key points on a human face. It consists of images of human faces, each accompanied by key point annotations in XML format.
Get the dataset
This is just an example of the data
Leave a request on https://trainingdata.pro/data-market to discuss your requirements, learn about the price and buy the dataset.
Data Format
Each image from FKP
folder is accompanied by an XML-annotation in the annotations.xml
file indicating the coordinates of the key points. For each point, the x and y coordinates are provided, and there is a Presumed_Location
attribute, indicating whether the point is presumed or accurately defined.
Example of XML file structure
Labeled Keypoints
1. Left eye, the closest point to the nose
2. Left eye, pupil's center
3. Left eye, the closest point to the left ear
4. Right eye, the closest point to the nose
5. Right eye, pupil's center
6. Right eye, the closest point to the right ear
7. Left eyebrow, the closest point to the nose
8. Left eyebrow, the closest point to the left ear
9. Right eyebrow, the closest point to the nose
10. Right eyebrow, the closest point to the right ear
11. Nose, center
12. Mouth, left corner point
13. Mouth, right corner point
14. Mouth, the highest point in the middle
15. Mouth, the lowest point in the middle
Keypoint annotation is made in accordance with your requirements.
**TrainingData**
More datasets in TrainingData's Kaggle account: https://www.kaggle.com/trainingdatapro/datasets
TrainingData's GitHub: https://github.com/Trainingdata-datamarket/TrainingData_All_datasets
- Downloads last month
- 9