rut5-base-summ
Model
Finetuned ai-forever/ruT5-base for text and dialogue summarization.
Data
- d0rj/samsum-ru
- IlyaGusev/gazeta
- zjkarina/matreshka
- rcp-meetings/rudialogsum_v2
- GEM/wiki_lingua
- mlsum
All 'train' subsets was concatenated and shuffled with seed 1000 - 7
.
Train subset = 155678 rows.
Metrics
Evaluation on 10% of concatenated 'validation' subsets = 1458 rows.
See WandB logs.
See report at REPORT WIP.
Notes
Scheduler, optimizer and trainer states are saved into this repo, so you can use that to continue finetune with your own data with existing gradients.
Usage
Summarization pipeline
from transformers import pipeline
pipe = pipeline('summarization', model='d0rj/rut5-base-summ')
pipe(text)
Text-to-text generation
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained('d0rj/rut5-base-summ')
model = T5ForConditionalGeneration.from_pretrained('d0rj/rut5-base-summ').eval()
input_ids = tokenizer(text, return_tensors='pt').input_ids
outputs = model.generate(input_ids)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
- Downloads last month
- 297