Saiga2 7B, Russian LLaMA2-based chatbot
Based on LLaMA-2 7B HF.
This is an adapter-only version.
Llama.cpp version: link.
Colab: link.
Training code: link.
WARNING 1: Run with the development version of transformers
and peft
!
WARNING 2: Avoid using V100 (in Colab, for example). Outputs are much worse in this case.
WARNING 3: You can use the Llama-2-7B-fp16 base model instead.
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
MODEL_NAME = "IlyaGusev/saiga2_7b_lora"
DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>\n"
DEFAULT_SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
class Conversation:
def __init__(
self,
message_template=DEFAULT_MESSAGE_TEMPLATE,
system_prompt=DEFAULT_SYSTEM_PROMPT,
start_token_id=1,
bot_token_id=9225
):
self.message_template = message_template
self.start_token_id = start_token_id
self.bot_token_id = bot_token_id
self.messages = [{
"role": "system",
"content": system_prompt
}]
def get_start_token_id(self):
return self.start_token_id
def get_bot_token_id(self):
return self.bot_token_id
def add_user_message(self, message):
self.messages.append({
"role": "user",
"content": message
})
def add_bot_message(self, message):
self.messages.append({
"role": "bot",
"content": message
})
def get_prompt(self, tokenizer):
final_text = ""
for message in self.messages:
message_text = self.message_template.format(**message)
final_text += message_text
final_text += tokenizer.decode([self.start_token_id, self.bot_token_id])
return final_text.strip()
def generate(model, tokenizer, prompt, generation_config):
data = tokenizer(prompt, return_tensors="pt")
data = {k: v.to(model.device) for k, v in data.items()}
output_ids = model.generate(
**data,
generation_config=generation_config
)[0]
output_ids = output_ids[len(data["input_ids"][0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True)
return output.strip()
config = PeftConfig.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto"
)
model = PeftModel.from_pretrained(
model,
MODEL_NAME,
torch_dtype=torch.float16
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
print(generation_config)
inputs = ["Почему трава зеленая?", "Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч"]
for inp in inputs:
conversation = Conversation()
conversation.add_user_message(inp)
prompt = conversation.get_prompt(tokenizer)
output = generate(model, tokenizer, prompt, generation_config)
print(inp)
print(output)
print()
print("==============================")
print()
Examples:
User: Почему трава зеленая?
Saiga: Зеленый цвет травы связан с наличием хлорофилла в её клетках. Хлорофилл - это пигмент, который обеспечивает защиту от ультрафиолетового излучения солнца. В процессе фотосинтеза растения используют энергию света для создания кислорода и органических веществ, таких как сахара. Ультрафиолетовое излучение может повредить хлорофиллы, поэтому они окрашиваются в зеленый цвет, чтобы предотвратить их повреждение.
User: Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч
Saiga: Жила-была девочка по имени Таня. Она была очень активной и любила играть в футбол со своими друзьями. Однажды она купила новый мяч, который был еще более красивым и качественным, чем все остальные. Он был настолько же красочен, что казалось, будто он сам играет!
Однако, когда Танечка начала играть с ним, то заметила, что мяч не так уж и легкий, как она думала. Вместо того чтобы лететь высоко вверх, он падал на землю, и Таня чувствовала себя очень грустной. Но она решила, что это просто ее плохая игровая форма, и продолжила играть.
Но уже через несколько минут после того, как Таня бросала мяч в воздух, он завис над головой и начал медленно кружить вокруг. Таня стала беспокойна и испуганна - что случилось? Как ее мяч стал таким тяжелым?
В этот момент, Таня услышала шум из ближайшего парка. Она поспешно отправилась туда, чтобы узнать, что происходит. Когда она подошла к парку, она увидела маленького мальчика, который сидел на дереве и плевал на свой мяч.
"Что ты делаешь?" - спросила Таня. Мальчик повернулся к ней и показал ей свой мяч. "Этот мяч мне нравится больше всего", - говорил он. "Я хочу, чтобы он был такой же, как твой".
Таня поняла, что её мяч перестал быть для нее только игровым предметом, но и символом дружбы и общения. Она решила вернуться домой и взять его с собой.
Когда они пришли домой, Таня дала своему другу мяч и объяснила ему, что теперь их два мяча будут лучше вместе, чем один. Именно так, благодаря дружбе и сотрудничеству, Таня и ее новый друг стали лучшими командами. Их мячи стали играть вместе, и каждый из них становился еще лучше и быстрее благодаря друг другу.
Итак, Таня научилась, что настоящая дружба - это не только общительность и веселость, но и помощь и поддержка друг друга в трудных ситуациях. Благодаря своей новому другу, Таня научилась ценить своих товарищей и находить радость в том, что можно учиться у других людей.
v2:
- context extended to 4096
- wandb link
- saiga2_7b_v2 vs saiga2_7b: 85-23-68
v1:
- dataset code revision 7712a061d993f61c49b1e2d992e893c48acb3a87
- wandb link
- 7 datasets: ru_turbo_alpaca, ru_turbo_saiga, ru_sharegpt_cleaned, oasst1_ru_main_branch, gpt_roleplay_realm, ru_turbo_alpaca_evol_instruct (iteration 1/2), ru_instruct_gpt4
- Datasets merging script: create_chat_set.py
- saiga7b_v5 vs saiga2_7b: 78-8-90
- Downloads last month
- 0