Baseline Model trained on trainii_ac94u to apply classification on label
Metrics of the best model:
accuracy 0.361046
recall_macro 0.353192
precision_macro 0.240667
f1_macro 0.278231
Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64
See model plot below:
Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string uselessIn a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.id True False False ... False False False text False False False ... False True False[2 rows x 7 columns])),('logisticregression',LogisticRegression(C=0.1, class_weight='balanced',max_iter=1000))])
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless id True False False ... False False False text False False False ... False True False[2 rows x 7 columns])),('logisticregression',LogisticRegression(C=0.1, class_weight='balanced',max_iter=1000))])
EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless id True False False ... False False False text False False False ... False True False[2 rows x 7 columns])
LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)
Disclaimer: This model is trained with dabl library as a baseline, for better results, use AutoTrain.
Logs of training including the models tried in the process can be found in logs.txt
- Downloads last month
- 0
This model can be loaded on the Inference API on-demand.