Edit model card

vit-fire-detection

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0126
  • Precision: 0.9960
  • Recall: 0.9960

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall
0.1018 1.0 190 0.0375 0.9934 0.9934
0.0484 2.0 380 0.0167 0.9961 0.9960
0.0357 3.0 570 0.0253 0.9948 0.9947
0.0133 4.0 760 0.0198 0.9961 0.9960
0.012 5.0 950 0.0203 0.9947 0.9947
0.0139 6.0 1140 0.0204 0.9947 0.9947
0.0076 7.0 1330 0.0175 0.9961 0.9960
0.0098 8.0 1520 0.0115 0.9974 0.9974
0.0062 9.0 1710 0.0133 0.9960 0.9960
0.0012 10.0 1900 0.0126 0.9960 0.9960

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.14.0.dev20221111
  • Datasets 2.8.0
  • Tokenizers 0.12.1
Downloads last month
250
Hosted inference API
Drag image file here or click to browse from your device
This model can be loaded on the Inference API on-demand.

Space using EdBianchi/vit-fire-detection 1