Papers
arxiv:2306.01116

The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only

Published on Jun 1
· Featured in Daily Papers on Jun 5
Authors:
,
,
,
,
,

Abstract

Large language models are commonly trained on a mixture of filtered web data and curated high-quality corpora, such as social media conversations, books, or technical papers. This curation process is believed to be necessary to produce performant models with broad zero-shot generalization abilities. However, as larger models requiring pretraining on trillions of tokens are considered, it is unclear how scalable is curation and whether we will run out of unique high-quality data soon. At variance with previous beliefs, we show that properly filtered and deduplicated web data alone can lead to powerful models; even significantly outperforming models from the state-of-the-art trained on The Pile. Despite extensive filtering, the high-quality data we extract from the web is still plentiful, and we are able to obtain five trillion tokens from CommonCrawl. We publicly release an extract of 600 billion tokens from our RefinedWeb dataset, and 1.3/7.5B parameters language models trained on it.

View arXiv page View PDF

Community

This comment has been hidden

Sign up or log in to comment

Models citing this paper 52

Browse 52 models citing this paper

Datasets citing this paper 5

Browse 5 datasets citing this paper

Spaces citing this paper 252